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state of a pair of ions, coupled either antiferromagneti-
cally or ferromagnetically. In each case, there are four 
possibilities for coupling two ions of spin f, leading to a 
total spin 5 = 0,1, 2, and 3. In a first approximation they 
take a quadratic isotropic exchange energy H=J(§i$2), 
with J =33 cm-1 for the antiferromagnetic coupling, 
and in that case the positions of the 4 levels are 
0 - / = 33 -37= 99 and 67=198 cm"1. The observed 
far-infrared lines are interpreted as the S=Q—> 1 and 
S= 0 —» 2 transitions. The 6 = 0 —» 3 would lie at 
198 cm-1, where the lattice absorption is considerable. 
Figures 12 and 13 give the behavior of the population 
for every level versus temperature, in each type of 
coupling, calculated from the partition functions. There 
is a drastic change of the population no of the lower 
level only in the first type, and it explains quite well 
the observed variations of intensities of both lines with 
temperature.4 The contribution of ferromagnetic pairs 
would give two lines at 35 and 42 cm"1, which could be 
mixed with the antiferromagnetic one at 33 cm-1. That 
would explain the slightly higher wave number observed 
(37 cm-1), but this contribution is certainly small, and 
a check at 21 cm-1 is planned. 

Recently, Kisliuk6 has considered a more refined 
antiferromagnetic coupling with a quite different / 

6 P. Kisliuk, Appl. Phys. Letters 3, 215 (1963). 

FIG. 13. Variations 
of the populations 
»o«i»2-»j of the 4 
sublevels of a ferro
magnetic pair, versus 
i/r. 

( /= 11 cm-1) and a small biquadratic term: E= /(SiS2) 
-i(SiS2)2 , with j/J=2%. The new positions of the 4 
levels are now 0, 10.3, 32.7, and 67.9 cm"1. They are 
quite different, but there are so many lines in the red 
that this scheme is also possible. However, the far-
infrared spectra are strikingly in favor of the first one, 
and are impossible to explain with the second: There is a 
line at 100 cm-1; there is none near 68 cm-1. 
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Infrared absorption by small needle-shaped ionic crystals of cubic structure has recently been found to be 
anisotropic. In this note, a single strand is used as a limiting model for such a crystal, and the calculated ab
sorption in both directions is shown to be in qualitative agreement with observations on lithium fluoride. 
Features of absorptions to be expected from other crystals are discussed. 

RECENTLY, Hass1 prepared small needle-shaped 
lithium fluoride crystals by evaporating a thin film 

of lithium fluoride onto an optical grating (rather than 
onto a plane surface as is usual). The grating spacing, 
and hence the width of the resulting crystals, was small 
compared to the infrared absorption wavelength. The 
resulting absorption was found to be strongly 
anisotropic.2 

We may summarize the experimental results by re-
1 M. Hass, Proceedings of the Far Infrared Physics Symposium, 

Riverside, California, January 1964 (unpublished). 
2 Anisotropic Absorption by Needles of NiSb has also recently 

been reported by B. Paul and H. Weiss, Solid State Electron (to 
be published). D. W. Berreman, Phys. Rev. 130, 2193 (1963) has ob
served similar anisotropy and polarization dependence in the 
absorption of obliquely incident beams by thin films. 

ferring to the somewhat idealized rod-shaped crystals 
of Fig. 1. Let the light wave propagate in the z direction 
(into the paper); then the "usual" sharp absorption is 
found if the light is polarized in the % direction (parallel 
to the long edge of the crystal), but a broad absorption 
shifted to a higher frequency is found if the light is 
polarized in the y direction (perpendicular to the long 
edge of the crystal). 

The simplest, and purely qualitative, theoretical 

FIG. 1. Model of a needle-shaped crystal. 
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FIG. 2. Limiting model of a needle-shaped 

crystal (single strand). 

explanation for this, is as follows. Each normal vibration 
has associated with it a dipole moment in the x direction 
Px and a dipole moment in the y direction Py\ these 
depend on the displacements of the atoms during that 
vibration, in the x direction in one case and in the y 
direction in the other. As these two displacements are 
not necessarily the same on account of the lack of sym
metry in the crystal of Fig. 1, Px and Py will not neces
sarily be the same either. The absorption of light of the 
proper frequency and polarized in the x direction 
depends on the square of Px, and that of light polarized 
in the y direction on the square of Py. In a crystal which 
is large and cubic in growth shape as well as cubic in 
internal symmetry, there will be, for any mode with 
given displacements in the x direction, one mode with the 
same displacement in the y direction and one with that 
same displacement in the z direction. Therefore isotropic 
absorption will result from the total Px

2,Py
2,Pz

2 resulting 
from these three. On the other hand, in a crystal so small 
in one direction that boundary effects are important, 
these three symmetrical modes will not necessarily exist, 
and absorption shown by light of different polarization 
will therefore not be necessarily the same. 

To make quantitative calculations of the quantities 
Px and Py would be by no means easy. Let us therefore 
idealize the situation even further, and replace the long, 
thin crystal of Fig. 1 by the even longer and thinner one 
of Fig. 2. The width and thickness of the crystal have 
been shrunk to one atom here, and the length in the 
x direction increased to infinity; in short, a one-dimen
sional crystal. The light wave is still envisaged in the 
z direction, into the paper. In this situation, the vibra
tions in the x direction ("longitudinal")3 and those in 
the y direction ("transverse")3 are separate and distinct; 
only the former have a dipole moment in the x direction, 
and only the latter have a dipole moment in the y 
direction. Let us assume nearest-neighbor interaction 
and in addition Coulomb interaction between all atoms. 
Then the frequencies of the longitudinal vibrations are 
known,4 and those of the transverse vibrations can be 
easily calculated in the same way. One has longitudinal 

Xiong(#) = Xo(^)-cr5(p)> (1) 

transverse 

\rUp)=(P/<x)Mp)+(*/2)S(p), (2) 

3 Let us make clear that throughout this paper "longitudinal" 
and "transverse" mean lattice vibrations || or JL to the long axis 
of the crystal, not to a light beam. 

*H..B. Rosenstock, Phys. Rev. I l l , 755 (1958). 

with 
Ao(£) = l — COSTT^, (3) 

S(p) = £ {-)kk-\co$kirp-1). (4) 

Here X is proportional to the square of the frequency co, 

\=mo)2/2a, 

a is the force constant for longitudinal nearest-neighbor 
interaction and 0 the force constant for transverse 
nearest-neighbor interaction, m is the mass of each atom 
(all atoms are assumed to have the same mass here, for 
simplicity), p is the wave vector defined so as to run 
from 0 to 1, and a= 2e2/ar0

d is roughly a measure of the 
ratio of strengths of Coulomb to nearest-neighbor forces; 
TQ is the equilibrium distance between atoms, and e is 
their charge. X0(^) are thus the squared frequencies in 
the absence of Coulomb forces—the frequencies of a 
"one-dimensional metal." Both the functions \o(p) and 
S(p) are shown in Fig. 1 of Ref. 4; their general shape 
is similar although they differ in their analytical be
havior near p=l. 

The two expressions (1), (2) appear surprisingly 
similar, but there are important qualitative differences. 
In (1), the function S is preceded by a minus sign, but 
in (2) by a plus sign (the X0 term is positive in both 
cases). Thus Xtrans is positive for all values of the param
eters, but Xiong becomes negative if a is large enough. 
Since a negative X implies an imaginary vibrational fre
quency, this means physically that the longitudinally 
vibrating lattice is unstable for large enough Coulomb 
forces, or for small enough nearest-neighbor forces, 
whereas transverse vibrations are always stable, even 
if nearest-neighbor forces are entirely absent. Direct 
physical intuition will verify this after a glance at Fig. 2 : 
Imagine one of the atoms displaced longitudinally—to 
the right, say. This increases the Coulomb attraction 
from its neighbor to the right and decreases its Coulomb 
attraction from its neighbor to the left, and thus causes 
further displacement to the right; in the absence of 
repulsion between nearest neighbors, the originally dis
placed atom will therefore move further in the same 
direction until the lattice collapses. If, on the other 
hand, an atom is displaced transversely, up, say, the 
situation is different: The Coulomb forces exerted by the 
two nearest neighbors are both downward, in a direction 
opposite to the original displacement, and the lattice is 
thus stable for transverse vibration under Coulomb 
forces even in the absence of any nearest-neighbor repul
sion. Since, in any physical situation, one would expect 
the noncentral nearest-neighbor restoring force to be 
quite small (/3/a<3Cl) if not absent, this seems fortunate. 

I t may be worth noting parenthetically that the quali
tative apprearance of Xiong(^) and \tTa,ns(p) is quite 
different, Xtr0ns, being just the sum of two "S-shaped" 
functions shown in Ref. 4, is itself ^-shaped with its 
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minimum at p=0 and its maximum at p~ 1, but, as is 
shown in Ref. 4, Xiong has its maximum not at p== 1 but 
at a smaller value of p, and a minimum at p— 1. This is 
illustrated in Fig. 3 for a special set of values of the 
force constant ratios. 

What really interests us here, though, is the behavior 
of the two functions at p~ 1—the value of p near which 
optical absorption takes place.5 At p=ly Eqs. (1) and 
(2) become 

Xiong(l) = 2-2J(r, (5) 

1.0 

where 
Xtrans(l) = 2/3/G:+£0-, 

$ = i - 3 + 3 - 3 + 5 - 3 + . . . = L 0 5 2 -

(6) 

(7) 

It follows that Xtrans(l) will be greater than Xiong(l) if 
and only if 

cr>2(l-j8/a)/3{ (8) 

or (since /3 is probably small and close to unity) 

<r>0.6. (9) 

Values of <r~-f seem physically reasonable4'6 and our 
crystal can therefore be expected to exhibit absorption 
of transversely polarized light at frequencies higher than 
the absorption of longitudinally polarized light. We shall 
discuss this somewhat more quantitatively later. 

Let us review these arguments leading to this result 
from the physical rather than the mathematical view
point. Large restoring forces produce high frequencies, 
small restoring forces produce low frequencies. In the 
longitudinal case the restoring force is small because the 
Coulomb force counteracts the dominant nearest-
neighbor force, and the resulting frequencies are low; in 
the transverse case, both the nearest-neighbor force and 
the Coulomb force act in the same direction, the restor
ing force produced is therefore large, as are the resulting 
frequencies. (Note that this argument will not work in 
the absence of Coulomb forces, or indeed in the presence 
of only weak Coulomb force. In that case the longi
tudinal frequency will be the larger.) 

It is, of course, clear that we have taken two rather 
large steps toward simplification and away from reality 
as we went from the real crystal first to Fig. 1 and then 
to Fig. 2; but we may hope that our argument, particu
larly in its qualitative form of the last preceding para
graph, may have validity in the realistic case as well. It 
remains to explain the broadness of the observed peak 
in the transverse case. Here again we hope that a quali
tative argument will suffice. We may attribute the 
difference to the fact that boundaries have larger per
turbing effects on "small" crystals than on "large" 

6 Usually it is said that absorption appears when the wave vector 
is zero; here it appears at 1, because we have chosen a unit cell 
with one (rather than the usual 2) particle per unit cell. 

6 See C. Kittel, in Solid State Physics, edited by F. Seitz and 
D. Turnbull (John Wiley & Sons, Inc., New York, 1953), Chap. 2; 
and Ref. 4 above. 

——-—— AJong. 

' ~~ """ A trans. 

0.8 p 

FIG. 3. The squared frequencies Atrans and Xiong 
as a function of wave vector p. 

crystals. (This has been shown elsewhere,7 but is prob
ably physically obvious to most.) We now return to 
Fig. 1 but remember that the real crystal will not have 
the perfect shape depicted there, but will necessarily 
have somewhat irregular boundaries. It seems plausible 
that for the same reason the vibrations in the direction 
in which such a crystal is small will be more strongly 
perturbed by the boundary irregularities than the vibra
tions in the direction in which the crystal is large. Since 
the observed absorption represents the additive effects 
of many such crystals, each with absorbing properties 
only slightly different from the ideal in the longitudinal 
direction but appreciably different in the transverse 
direction, a broader absorption for transversely polarized 
light should be expected. 

One restriction in the work above that can be removed 
is the assumption that both the positively and the 
negatively charged ion have the same mass m. We now 
show that the conclusions drawn remain valid, even 
quantitatively, under the more realistic assumption of 
two ions with different mass. 

If one ion (of the lattice shown in Fig. 2) has mass m 
and the other has mass M, then Eq. (1) for the squared 
longitudinal frequency is replaced by two equations, 

A wcoiongV2 = a(A — B cosirp) 

-(2«Vr0
8)D4 Z *-8cos(farp-l) 

even k 

+A E k-*-B E k-
odd k odd k 

coskirp~] (10) 

7 EL. B. Rosenstock, J. Chem. Phys. 23, 2415 (1955). 
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and 

BM(j)i0ng2/2 = a(B—A cos7r^) 

- ( 2 e 2 A o 3 ) p 3 E k-*(coskirp~l) 
evenk 

+B £ k~3-A £ j&-*cosfcr£|. (11) 
odd & odd k 

Equation (2) for the squared transverse frequency is 
also replaced by two equations, but we need not write 
them down, as they can be obtained from (10) and (11) 
by simply replacing a and /3 and e2 by — e2/2. We then 
obtain \(p) by solving the determinantal equation of the 
coefficients of A and B. For p=0, which is the value of 
p at which the "limiting" or optical frequency appears 
in the diatomic scheme, that determinantal equation is 

0= 
1—<r£—Xiong — (1 — cr£) 

(12) 

The solutions of this are found to be Xiong=0 (which is 
not of interest) and 

Xiong=l—o-f, (13) 

Aiong= fnMulong
2/2a(M+m), (14) 

where 

and for the transverse frequency, by analogy, A t r ans=0 
and 

A trans — 03/a)+(ff/2){, (15) 
where 

A t r a n s — mM<o*„J/2a{M+m). (16) 

Thus (13) and (15) differ from the corresponding ex
pressions (5), (6) of the monatomic case by the same 
constant factor /x/w where, fj,=mM/(m+M) and rela
tion (8), which is based on their ratios, is entirely un
changed. (To be sure, this simple proportionality would 
not be retained at points other than ^ = 0 . ) 

Let us now consider two points related to experi
mental observations that have been, or might be, made. 
As we pointed out, the frequencies we calculated for 
longitudinal and transverse vibrations are valid only in 
the limit of the single strand of Fig. 2. In the real case 
of rod- or needle-shaped small crystals to which the 
available observations apply,1 '2 the crystals are much 
more than one strand wide and thick; but it seems 
reasonable that the relationship between transverse and 
longitudinal frequencies computed for a single strand 
will hold in the same sense for a rod of any thickness. 
Put more precisely, the argument is this: As the one-
strand crystal becomes thicker, and finally approaches a 
cube, the two frequencies wiong and atrans will come closer 
together and finally become equal.8 I t seems highly 

8 When the rod has grown to a cube, the frequency first called 
transverse will be indistinguishable from the longitudinal one, 
except for a 90° rotation in the direction of all the displacements 
(or except for a 90° rotation of the crystal as a whole). For 
detailed discussion of this point, see H. B. Rosenstock, Phys. Rev. 
121, 416 (1961); A. A. Maradudin and G. Weiss, ibid, 123, 
1968 (1961); T. H. K. Barron, ibid. 123, 1995 (1961). 

plausible that they would do this without "crossing 
over"; i.e., that if cotrans>wiong for the single-strand 
crystal, the same will hold true for any thickness (until, 
with infinite thickness, they approach equality). 

We can calculate this limiting frequency for infinite 
thickness—i.e., for a crystal in the shape of an infinite 
cube—in terms of the same parameters as appear in our 
one-dimensional equations. The nearest-neighbor inter
action term 2a(l — COSTT )̂ is replaced by (2a+4/3) 
(1 — cosirp), because in addition to the two neighbors in 
the direction of the vibration, there are now four 
neighbors in directions perpendicular to vibration exert
ing noncentral forces. The sum of the Coulomb terms 
becomes, for p—Q 

(2e2/fo3) E E E (-y+™+»(2l2-ni2-n2) 
l, m, n even, even, odd 

X(uimn-~u0oo)/(l2+m2+n2y/2. 

The secular equation corresponding to (12) then becomes 

\\l/~mcx)2 —\j/ I 

- ^ t-Ma>2\ ' 
0= 

where 

and 
$=2a+4/3- (2e*/rQ*)V 

v= E E E (-)'+-+» 
I, m, n even, even, odd 

X(2l2~m2-n2)/(P+m2+n2)5/2 (17) 

is a number which has been computed,9 

7=3.754.-•. (18) 

The solutions of the secular equation are w = 0 (of no 
interest) and 

or 
Mco3D2/2a= l+2(p/a)-(*V/2) 

^D=l+2r-(a/2)V, 
(19) 

with T=0/OL and X3Z) by analogy with (17). 
Let us summarize: Longitudinal and transverse 

squared frequencies of the one-strand crystal are, re
spectively, (13) and (15), viz., 

Along ID = 1 — 1.052(T 

and 
'Wans ID ~ T + 0 . 5 2 6 c r . 

(20) 

(21) 

The three-dimensional limiting frequency which they 
both approach as the crystal approaches infinite thick
ness is 

Xu>=l+2r-1.877cr . (22) 

The magnitude relationships between these three ab
sorbing frequencies are shown graphically in Fig. 4 as a 
function of the parameters cr and r. 

9 H . B. Rosenstock, Phys. Chem. Solids 4, 201 (1958). 
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FIG. 4. Magnitude relationships between frequencies as a 
function of the force constant parameters <r and r. L, T, and 3D 
have been written for Along, Xtrans, and \$D-

One physical property that has been ignored so far is 
electronic polarization. I t is known, of course, that this 
will change the frequencies of vibration, but we can 
show that under certain reasonable conditions, it will 
leave the relative magnitudes of the frequencies of 
optical interest unchanged; i.e., if Xtrans >Xiong holds in 
the absence of polarization, then it will hold also when 
polarization is taken into account. The simplest method 
of taking polarization into consideration is the shell 
model.10 If we let the halide ions consist of a mass point 
of charge minus e and the metal ions of a shell of charge 
e' surrounding a mass point of charge (e—e'), and let 7 
be the Hooke's law force constant between metal shell 
and metal core, the resulting frequency can be expanded 
in a series in y~l\ one gets 

^iong=a-e^+y-Ka-~ee'ty+0(y~*), (23) 

^ans=P+he*i;+y-*(p+W82+0(y-2). (24) 

The linear terms in each case are seen to be the corre
sponding frequencies in the absence of polarization 
( 7 = 00), and the quadratic ones are seen to be propor
tional to the same quantities if we set e '=e (i.e., the 
reasonable situation in which the polarizable charge of 
the metal ion is that of the one valence electron); one 
can then deduce from (23), (24) that if Xtrans>Riong for 
y= 00, then the same will be true for finite y if terms up 
to y~l are retained. 

Next, we should try to get a quantitative estimate of 
the value of the critical parameter <r for real substances 
in order to predict, from (9) whether Xtrans >Xiong. Some 
fairly old semiempirical calculations enable us to do this. 
Empirically, the short-range interaction in ionic crystals 
is usually put either into the form br~n or the form ae~r,p. 
Our force constant a can be related to these; one finds 
a=bn(n+ l)r~n~2 in the former case, and a= ae~ro/pp~2 in 
the latter. From these expressions, one can derive, 

10 W. Cochran, Proc. Roy. Soc. (London) A253, 260 (1959). 

TABLE I. Semiempirical values of o-=2e2/aro3 

for various alkali halides. 

<r, from <r, from 
f~n potential e*~r/p potential 

LiF L05 
LiCl 1.01 
LiBr 0.98 
NaCl 0.82 0.81 
NaBr 0.79 0.84 
Nal 1.00 
KC1 0.65 0.59 
KBr 0.62 
KI 0.69 
RbCl 0.77 
RbBr 0.64 
Rbl 0.64 

respectively, 

<T=(i2/MX-EcoWEre»)/n(n+l) 
or 

a= (12/M)(-Ecoui/£reP)p2Ao2 , 

where JECOUI and jErep are, respectively, the contributions 
of the Coulomb and the repulsive forces to the cohesive 
energy, and M =1.754 is the Madelung constant. The 
E's are given by Seitz11 as are the n's12; p and r0 are 
given by Mott and Gurney.13 Results of the calculations 
appear in Table I ; it is pleasing to note that where 
figures are available for both theories, the cr's agree to 
at least one significant figure. One concludes that the 
observation Xtrans > Xiong for LiF agrees with our criterion 
(9), as the table gives cr>0.6 for that case. Figure 4 also 
suggests that in this case Xi0ng should differ only slightly 
from X3D, also in agreement with experiment. For most 
other alkali halides, the table suggests that Xtrans should 
be greater than Xiong also, though by a lesser amount; 
for some, near equality should be expected. 

Finally, a different approach to considering this prob
lem should be put into perspective.1'14 Rather than be
ginning with the limiting case of a single strand crystal, 
one can begin with a large cubic crystal, and then con
sider the effects of the boundary, which provide polariza
tion forces larger in directions in which the crystal is 
small. Qualitatively similar results can then be obtained. 
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